Processing Data from Social Dilemma Experiments: A Bayesian Comparison of Parametric Estimators
نویسندگان
چکیده
Observed choices in Social Dilemma Games usually take the form of bounded integers. We propose a doubly-truncated count data framework to process such data. We compare this framework to past approaches based on ordered outcomes and truncated continuous densities using Bayesian estimation and model selection techniques. We find that all three frameworks (i) support the presence of unobserved heterogeneity in individual decision-making, and (ii) agree on the ranking of regulatory treatment effects. The count data framework exhibits superior efficiency and produces more informative predictive distributions for outcomes of interest. The continuous framework fails to allocate adequate probability mass to boundary outcomes, which are often of pivotal importance in these games. JEL Classification: C11, C24, C93, Q22
منابع مشابه
Analyzing Data from Social Dilemma Experiments: A Bayesian Comparison of Parametric Estimators
Observed choices in Social Dilemma games usually take the form of bounded integers. We propose a doubly-truncated count data framework to process such data. We compare this framework to past approaches based on ordered outcomes and truncated continuous densities via Bayesian estimation and model selection techniques, using data from recent field experiments in rural Colombia. We find that all t...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملTwo-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data
‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008